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a b s t r a c t

It is becoming more typical in regression problems today to have the situation where
‘‘p > n’’, that is, where the number of covariates is greater than the number of observations.
Approaches to this problem include such strategies as model selection and dimension
reduction, and, of course, a Bayesian approach. However, the discrepancy between p and n
can be so large, especially in genomic data, that examining the limiting case where p → ∞

can be a relevant calculation. Here we look at the effect of a prior distribution on the
coefficients, and in particular characterize the conditions underwhich, as p → ∞, the prior
does not overwhelm the data. Specifically, we find that the prior variance on the growing
number of covariates must approach zero at rate 1/p, otherwise the prior will overwhelm
the data and the posterior distribution of the regression coefficient will equal the prior
distribution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In clinical data it is nowoften the case that the number of differentmeasurements per patient is larger than the number of
patients in the study. This becomesmore dramatic in genomic studies, whenmany different gene expressions aremeasured
for each subject. For example, there may be thousands of genes with fewer than one hundred patients. Lee et al. (2003)
cite studies where the number of genes selected as having an impact on a response variable (for example, a disease) is
significantly larger than the number of sample points.

Here we are interested in the relationship between the covariates and the outcomewhen considering a regressionmodel
with p covariates and n observations. Classical (frequentist) regression requires p < n to have unequivocal inferences.
When p > n, in order to obtain inferences, classical techniques require some data reduction technique (for example,
principal components) to identify an effective set of covariates that have dimension less than n. However, in such cases,
the interpretation of the results in terms of the original covariates becomes complicated.

In contrast, Bayesian regression with proper priors can be directly applied when p > n. If the credible interval of a
regression coefficient does not include zero then we assume that this covariate has an impact in the response. As long as we
use a proper prior for the regression coefficients we can keep adding covariates, that is, we can let p → ∞. Here we explore
the behavior of the posterior distribution of the regression coefficients when this is the case.
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1.1. Background

The literature relating to this problem is quite small. Jiang (2007), working in the context of Bayesian Variable Selection
(BVS) in generalized linear models, gives an example with p ≫ n where using the full model (the one including all the
covariates available) for the inference yields undesirable results. However, he shows that BVS performs well when the
priors for the parameters of each model satisfy certain conditions, in that the predictive model implied by the selected
model, p(y | Dn) is close to the true model p∗(y) where Dn is the observed data.

Gupta and Ibrahim (2009) propose a family of prior distributions when the sampling distribution belongs to the
exponential family. Their prior is based on the Fisher information matrix of the coefficients of the linear element of the
GLM, and reduces to the g-prior of Zellner (1971, Section 10.4) in the normal linear regression case. Using ridge regression
ideas, they handle the problem of p ≫ n by adding γ I to the Fisher informationmatrix, which adds a new tuning parameter
to the prior specification. This is the ridge g-prior.

1.2. Summary

Here we restrict our study to the linear regression case and, in contrast to Jiang (2007) we do not perform variable
selection but rather focus on the inference on the parameters of the model. To simplify the analysis, throughout the paper,
we also assume the error variance in the regression is known. We first consider the Bayesian regression setting:

Y = Xβ + ϵ, ϵ ∼ MVNn(0, Σϵ) (1)
β ∼ MVNr(0, Σβ),

where MVNr(m, B) represents the r-variate normal distribution with mean m and covariance matrix B. In Section 2 we
examine, as a function of the prior variances, the behavior of the posterior distribution of β when covariates are added
to the model. We focus on the case Σϵ proportional to the identity matrix and Σβ either proportional to the identity or
specified according to the ridge g-prior. We find that, as the number of additional covariates, p, grows, the prior variance
must decrease like 1/p, otherwise the data may have no influence on the posterior distribution. This is the case both for an
independence prior, and the ridge g-prior. In Section 3 we give conditions on how the covariates themselves must grow in
order for the prior not to overwhelm the data. Section 4 contains a short discussion, and there is a small technical Appendix.

2. The influence of the prior as p → ∞

The posterior distribution of the regression parameter β in model (1) is then MVNp(δβ , Λβ) where,

Λβ =


X′Σ−1

ϵ X + Σ−1
β

−1
, and δβ = ΛβX′Σ−1

ϵ Y. (2)

To examine the behavior of the coefficients as p → ∞, we augment the model with

Y = (X: C)βr+p + ϵ, ϵ ∼ MVN(0, σ 2I) (3)

where we augment the n × r matrix X with an n × p matrix C, column bound to the design matrix X. Here we consider r
fixed, whichmay reflect coefficients of major interest, and we look at the effect on these coefficient estimates as p → ∞. As
the number of columns in C grows, we must be concerned with the limiting behavior of (1/p)CC′. In this section we make
the common assumption that

(1/p)CC′
→ S, a positive semi-definite matrix (4)

and in Section 3 we relax this assumption.

2.1. The posterior distribution from independent coefficients

Nowwe let the regression coefficients, β , be a priori independent and distributed according to a normal lawwith known
variance, in particular, we partition βr+p = (βr , βp), giving it a normal prior distribution with mean and covariance matrix

Eβr+p = 0 and Varβr+p =


τ 2
r Ir 0
0 τ 2

p Ip


, (5)

where Im is an m × m identity matrix. We summarize the posterior distribution of βr in the following lemma.
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Lemma 1. For the model (3) with prior (5), the posterior distribution of βr is normal with mean and variance

δβr = E(βr | Y) =
1
σ 2


1
σ 2

X′Γ X +
1
τ 2
r
Ir
−1

X′Γ Y

Vβr = Var(βr | Y) =


1
σ 2

X′Γ X +
1
τ 2
r
Ir
−1

,

where

Γ = In − C


C′C +

σ 2

τ 2
p
Ip

−1

C′
=


τ 2
p

σ 2
CC′

+ In

−1

. (6)

Proof. The posterior variance of βr+p isA =
1
σ 2

X′X +
1
τ 2
r
Ir B =

1
σ 2

X′C

B′
=

1
σ 2

C′X D =
1
σ 2

C′C +
1
τ 2
p
Ip


−1

=


A− B−

B′− D−



where

A−
= (A − BD−1B′)−1

=


1
σ 2

Xt Γ X +
1
τ 2

Ip
−1

with Γ given in (6). Clearly, thematrix A− is the covariancematrix of βr . The calculation of E(βr | Y) is straightforward. �

Note that the second expression for Γ follows fromWoodbury’s Theorem (Woodbury, 1950; see also Hager 1989), and this
matrix plays a fundamental role. The effect of the augmented coefficients onβr is only through thismatrix,whichwill govern
it limiting behavior. In particular, if Γ → 0 (or equivalently, since Γ is positive definite and X ≠ 0 fixed, X′Γ X → 0) the
posterior mean goes to the prior mean, 0, and the posterior covariance matrix goes to the prior covariance τ 2

r Ip. Thus, the
prior overwhelms the data and inference is solely dependent on the prior. However, if Γ converges to a finite value then,
even if p is infinite, the data still have an effect on the posterior distribution.

Using the assumption that (1/p)CC′
→ S, we have

Γ =


p
τ 2
p

σ 2
[(1/p)CC′

] + In

−1

≈


p
τ 2
p

σ 2
S + In

−1

,

and thus the limiting behavior of p
τ2
p

σ 2 controls the posterior distribution of βr . We summarize this in the following theorem.

Theorem 2. For the model situation of Lemma 1

lim
p→∞

Γ =



I if p
τ 2
p

σ 2
→ 0

(I + cS)−1 if p
τ 2
p

σ 2
→ c

0 if p
τ 2
p

σ 2
→ ∞

where c > 0 is a constant. Thus,

(a) If Γ → I the posterior density of βr converges to the usual posterior ignoring the augmented matrix C,
(b) If Γ → 0, the posterior density converges exactly to the prior density.1

(c) If limΓ = (I + cS)−1, then the limiting posterior distribution of βr is from the model

Y = Xβr + ϵ, ϵ ∼ N(0, σ 2(I + cS)), βr ∼ N(0, τ 2
r I).

1 The convergence of the densities implies convergence in total variation or in distribution.
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We summarize the details in the following table:

lim p
τ2
p

σ 2 Limiting posterior distribution

0 π (0)(βr |Y) = N


1
σ 2 VβrX′Y, Vβr


, Vβr =


1

σ 2 X′X +
1
τ2
r
Ir
−1

0 < c < ∞ π (c)(βr |Y) = N


1
σ 2 VβrX′(I + cS)−1Y, Vβr


, Vβr =


1

σ 2 X′(I + cS)−1X +
1
τ2
r
Ir
−1

∞ π (∞)(βr |Y) = N(0, τ 2
r Ir)

So the limiting behavior of p
τ2
p

σ 2 is key in understanding the effect of the infinite augmentation. In particular, we need to
be concerned when this quantity goes to infinity, as then the prior overwhelms that data, which is never a good idea! This

quantity remains finite only if p
τ2
p

σ 2 → c , which means that
τ2
p

σ 2 = O(1/p) and, in particular, goes to zero as p → ∞. Since
the prior mean is also zero, this means that the coefficients of βp are all converging a priori to zero in probability, and thus
have little or no effect on the estimation of βr .

The prior probability that the prior onβp gives to any ball centered at 0 of radius c is P(χ2
p ≤ c/τ 2

p )withχ2
p denoting a chi-

square r.v. with p degrees of freedom. Sinceχ2
p → ∞ a.s. as p → ∞, if the limiting value of τ 2

p is either a positive constant or
infinity, thenmass will be placed infinitely far away from any fixed point in the parameter space of βps (i.e., outside any ball
with fixed radius) and hence will influence the estimation greatly. In the latter case it completely wipes out any influence
of the data on the estimation of βr . If the limiting value of pτ 2

p is constant, this effect does not overwhelm the data.

2.2. Ridge g-prior

Now consider themodel (1) with a ridge g-prior on β defined by Gupta and Ibrahim (2009). They assume thatΣϵ = σ 2In,
Σβ = gσ 2(X′X + γ I)−1 and g, γ > 0 are chosen by the user, where we assume that σ 2 is known. This is a modification
of the original g-prior of Zellner (1971), which assumes Σβ = gσ 2(X′X)−1. Sabanés Bové and Held (2011) notice that the
original g-prior can be interpreted as the posterior after observing an imaginary sample Y0 = 0 of size n from the regression
model with known variance, Y0 | β ∼ Nn(X0β, gσ 2In), with prior p(β) ∝ 1 andX0 any designmatrix such thatX′

0X0 = X′X.
In order to include the ‘‘p > n’’ case Gupta and Ibrahim (2009) add a ridge regression parameter γ to the covariance

considered by Zellner. However, as we know from the results in the previous section, we cannot put the same prior on βr
and βp, so we modify the g-prior, and let the prior βr+p have prior mean zero and prior variance

gσ 2

X′X + γr Ir X′C

C′X CC′
+ γpIp

−1

with γr , γp > 0 chosen by the user. Similar to the calculations in the previous section, the posterior distribution of βr is
normal with mean and variance

δβr = E(βr | Y) =

(g + 1)X′ΓRX + γr I

−1 X′ΓRY

Vβr = Var(βr | Y) = gσ 2 (g + 1)X′ΓRX + γr I
−1

,

where

ΓR = I − (g + 1)C[(g + 1)C′C + γpIp]−1C′
=


(g + 1)p

γp

1
p
CC′

+ In
−1

.

Noting the similarity to (6), we see that here p/γp will play the same role as p
τ2
p

σ 2 in Section 2.1, that is, γp must grow like p.
We can summarize the conclusions in the following table:

lim p
γp

Limiting posterior distribution

∞ π (0)(βr |Y) = N


1
σ 2 VβrX′Y, Vβr


, Vβr = gσ 2


(g + 1)X′X + γr I

−1

0 < c < ∞ π (c)(βr |Y) = N


1
σ 2 VβrX′(I + c(g + 1)S)−1Y, Vβr


, Vβr =


1

σ 2 X′(I + c(g + 1)S)−1X + γr Ir
−1

0 π (∞)(βr |Y) = N

0, gσ 2


X′X + γr I

−1


3. Limiting behavior of the augmented matrix

Thus farwehave assumed (4), that the covariatesC result in a convergent 1
pCC

′ matrix.Wenow relax that assumption, and
look more closely at conditions on C under which Γ remains finite or converges to 0 for the case considered in Section 2.1.
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3.1. Conditions on eigenvalues

Wework with the matrix CC′
= ∆′D∆ with D = diag(λ1, . . . , λn) and ∆′∆ = In, the spectral decomposition of CC′, and

assume that λ1 ≥ λ2 ≥ · · · ≥ λn. From (6) we have

Γ =


τ 2
p

σ 2
CC′

+ In

−1

=


∆′


τ 2
p

σ 2
D + In


∆

−1

= ∆′


τ 2
p

σ 2
D + In

−1

∆

= ∆′


1/


1 +

τ 2
p

σ 2
λ1


. . .

1/


1 +

τ 2
p

σ 2
λn


∆. (7)

Clearly if
τ2
p

σ 2 λn → ∞, we have Γ → 0 and the posterior of βr converges to the prior. We now look at two cases in which
the posterior may be different from the prior. We write λi(p) to make explicit the dependence of λi on p.

1. If λn(p) → ∞ as p → ∞.
We require λn(p)τ 2

p /σ 2
→ c < ∞ or equivalently (when considering σ 2 fixed), a priori βp → 0 in probability, so that

the posterior density does not tend to the prior density. If this is the case, since the sample size is fixed, applying Lemma 1
to βp (instead of βr ), it is easy to see that each entry of βp → 0 in probability a posteriori.
We note that a necessary condition for λn(p) → ∞ is that the Euclidean norm of each of the rows of C goes to infinity
(see Theorem 3 below).

2. If lim τp/σ
2

→ c > 0, where c is finite.
We require that lim λi(p) < ∞, for some 1 ≤ i ≤ n so that Γ 9 0. If i > 1 then Γ → Γ ∗, a nonzero matrix that is not of
full rank. In this case there is a posterior different from the prior but the coefficients of βr are not estimable (remember, a
parameter is estimable if distinct values of the parameter always correspond to distinct values of the likelihood function).
If lim λ1(p) < ∞, then Γ → (I + c∞S∞)−1 for some finite constant c∞ and finite matrix S∞. This puts us in the same

situation as when lim p
τ2
p

σ 2 is finite in Section 2.1. Here βr has a limiting posterior distribution that depends on the data,
and all coefficients are estimable. The Appendix establishes the convergence result.

We note that similar results hold for the ridge g-prior, but will omit the details.

3.2. Conditions on the rows

Here we examine conditions on the rows of C that lead to different limiting behavior, and characterize how the rows of
the augmented matrix (the values of the covariates) must behave in order for the posterior of βr to converge to the prior.
The next theorem gives conditions under which the eigenvalues of a matrix ZZ′, with Z a matrix of dimension n× p, tend to
infinity as the number of columns, p, of Z goes to infinity. Notice that this is the case if each new row of Z (i) stays orthogonal
to the others, and (ii) its Euclidean norm diverges. The following theorem is a relaxation of these two conditions. Let zij be
the ij-entry of Z, let Zi denote its i-th row, and define ⟨Zi, Zk⟩ =

p
l=1 zilzkl as the standard Euclidean norm, that is, the dot

product.

Theorem 3. Let Z be an n × p matrix. If

lim
p→∞


⟨Zi, Zi⟩ −


k∈{1,...,n}\{i}

⟨Zi, Zk⟩


= ∞, for all i = 1, . . . , n, (8)

then the minimum singular value of ZZ′, λn(ZZ′), tends to infinity as p → ∞.

Proof. The theorem is an application of Eq. (1) in Johnson and Szulc (1998) stated here: Let A = (aij) be an n × n square
complex matrix and define, for k = 1, . . . , n,

Pk(A) =


j≠k

|akj| and Qk(A) =


j≠k

|ajk|

then the smallest singular value of A satisfies

λn(A) ≥ min
1≤k≤n


1
2


|akk| −

1
2
[Pk(A) + Qk(A)]


. (9)
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Setting A = ZZ′ and noticing that Pi(ZZ′) = Qi(ZZ′) and (ZZ′)ik = ⟨Zi, Zk⟩, we obtain the left side of (8) (without the 1/2)
and prove the theorem. �

The next lemma approximates the situation of standardized independent covariates. It says that, no matter how large
the coefficients βr are in the true model generating the data, if we keep adding noisy independent covariates, our estimates
of βr → 0 in probability, leading to an incorrect inference.

Lemma 4. Consider the model in (3) with the prior in (5) with τ 2
r and τ 2

p fixed. Also assume that the entries of C, cij, are iid with
mean 0 and variance 1. Then the posterior for βr converges to the prior as the number of covariates p → ∞.

Proof. We just need to prove that Γ → 0 or equivalently that C satisfies (8). Starting from

E


c2il −


k≠i

cilckl


= E(c2il ) − E(cil)E


k≠i

ckl


= 1,

and applying the ‘‘law of total variance’’, we obtain

Var


c2il −


k≠i

cilckl


= E


Var


c2il −


k≠i

cilckl | cil


+ Var


E


c2il −


k≠i

cilckl | cil



= E


c2ilVar


k≠i

ckl


+ Var


c2il − cilE


k≠i

ckl


= (n − 1)E


c2il

+ Var


c2il


= (n − 1) + 1 = n.

Therefore, c2il −


k≠i cilckl−1 hasmean 0 and variance n, and the lawof large numbers yields (1/p)
p

l=1


c2il −


k≠i cilckl


−

1 → 0 a.s. as p → ∞. �

From a frequentist point of view, whenΓ → 0 and τ 2
p /σ 2 converges to a finite number, regardless of the data generating

distribution g , limp→∞ Eg [E(βr |Y)] = 0 and limp→∞ Varg(E(βr |Y)) = 0. This is easy to see from the expression of E(βr | Y).

4. Discussion

Bayesian regression easily provides a solution to the case ‘‘p > n’’ in the sense that, if a proper prior is used, the resulting
matrices are nonsingular and coefficients estimates can be computed. However, caremust be taken because, unless the prior
is carefully specified, it can overwhelm the data and result in useless inferences. From the spectral decomposition (7), we

see that the quantities
τ2
p

σ 2 λi(p), i = 1, . . . , n govern the limiting behavior of the posterior distribution of βr . Only when the
limits of these quantities are finite do we get a posterior distribution for βr that depends on the data. In Section 2 we looked

at the case when λi(p)/p remained finite, as reflected in the assumption (4). In such a case we then need
τ2
p

σ 2 ∝ 1/p in order
to have a data-dependent posterior.

The results in Section 3.2, about the limiting behavior of the augmented rows, are more in a frequentist vein (although
the overall framework is still Bayesian). There we see that the augmented rows must grow at the correct rate in order to
insure that the posterior will reflect the data.

There is actually an interplay between the eigenvalues of CC′ and τ 2
p /σ 2, as can be seen from (7). To have a nondegenerate

posterior for βr requires only that
τ2
p

σ 2 λi(p) have a finite limit for some 1 ≤ i ≤ n. This suggests choosing τ 2
p proportional to

[λ1(p)]−1.
Lastly, we make two further observations. First, there is actually a stronger convergence result that can be established

in that, if λn(p) → ∞, the Euclidean distance between the posterior and prior expectations go to zero. And, we note that,
although we have worked in a special case of linear regression, it seems reasonable to expect that some version of these
results will apply to more complex linear and generalized linear models.
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Appendix. Convergence Proof

We first establish convergence when the largest eigenvalue converges, that is, when limp→∞ λ1(p) < ∞. If this limit
is infinity, but limp→∞ λi(p) < ∞ for some 1 ≤ i ≤ n, the situation is slightly more complicated, but is summarized in
Corollary 6.

Theorem 5. In the notation of Section 3, let λi(p), i = 1, . . . , n be the eigenvalues of CC′. If limp→∞ λi(p) < ∞, for 1 ≤ i ≤ n,
then Γ converges to a finite limit.
Proof. In the proof write C = Cp, the n × p matrix, to clarify the dependence on p.

We note the following:
1. The n largest singular values of CpC′

p are the same as those of C′
pCp. It is also the case that for this latter matrix, λi(p) = 0

for i > n.
2. The sequence {λi(p)}∞p=1 is nondecreasing for each i = 1, . . . , n. The Interlacing Property (Bhatia, 1997, page 59)

establishes that if A is an n × n symmetric matrix and Ai is a matrix obtained from A by removing the i-th row and
column, then the eigenvalues of A satisfy

λ1(A) ≥ λ1(Ai) ≥ λ2(A) ≥ λ2(Ai) ≥ · · · ≥ λn−1(Ai) ≥ λn(A).

If Cp+1 = (Cp: c), that is, we augment Cp with one more column, then applying the Interlacing Property to C′

p+1Cp+1 for
p > n, we get,

λ1(p + 1) ≥ λ1(p) ≥ λ2(p + 1) ≥ λ2(p) ≥ · · · ≥ λn(p + 1) ≥ λn(p) ≥ λn+1(p + 1) = 0.
3. Using 1., 2., and the hypothesis that limp→∞ λ1(p) < ∞ imply that, as p → ∞, λi(p) ↑ λ∗

i with λ∗

i finite, for i ≥ 1.
4. Γ converges in the Hilbert space of n × nmatrices with Frobenius norm.

The Frobenius norm of an n × nmatrix A is

∥A∥
2
F =


1≤i,j≤n

(A)2ij = trace(A∗A) =

n
i=1

νi(A)2,

where A∗ is the conjugate transpose of A and νi(A) denotes the i-th largest eigenvalue of the matrix A.
To prove statement 4, by (7) it is enough to prove that CpC′

p converges. In order to do so, we prove that the sequence
{CpC′

p}
∞

p=1 is Cauchy. From the Interlacing Property it follows that {
n

i=1 λi(p)}∞p=1 is Cauchy. Thus, given ϵ > 0, there
exists p0 > 0 such that for all p > p0 and m > 0,

n
i=1 λi(p + m) −

n
i=1 λi(p) < ϵ. Moreover, it also follows that

CpC′

p − Cp+mC′

p+m =

CpC′

p − (Cp: Cm)(Cp : Cm)′


= −CmC′

m,

and therefore

∥CpC′

p − Cp+mC′

p+m∥
2
F = tr


CmC′

m

2
=

n
i=1

λ′2
i (m),

where λ′

1(m) ≥ λ′

2(m) ≥ · · · ≥ λ′
n(m) are the eigenvalues of CmC′

m. We then have
n

i=1

λi(p + m) = tr(CpC′

p) + tr(CmC′

m) =

n
i=1

λi(p) +

n
i=1

λ′

i(m)

implying,
n

i=1

λ′

i(m) =

n
i=1

λi(p + m) −

n
i=1

λi(p) < ϵ for all p > p0 and m > 0.

Then, if 0 < ϵ < 1, since 0 < λ′

i(m) < ϵ < 1 for i = 1, . . . , n, we have

∥CpC′

p − Cp+mC′

p+m∥
2
F =

n
i=1

(λ′

i(m))2 < nϵ2. �

Corollary 6. In the notation of Section 3, let λi(p), i = 1, . . . , n be the eigenvalues of CC′. If limp→∞ λi(p) < ∞, for some
1 ≤ i ≤ n, then Γ does not degenerate to the zero matrix.
Proof. It should be clear from (7) that if some, but not all, of eigenvalues of CC′ go to infinity, the limiting Γ matrix will be
different from the zero matrix. However, this limit may not be unique. �
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